【算法】图论(三) (20221030)
2024-04-10 12:50:44  阅读数 223
1. 图相关的算法

图中一个最常见的操作是,通过一个点遍历它的临边。
(1)邻接矩阵:时间复杂度为O(V)。
(2)邻接表:由于每一行本来存储的就是连接的点,所以可以直接找到。
当然,以上操作将g这个图设置成public变量就可以实现,但是如何维护g仍然为private变量呢?因为,这样从设计模式角度来讲是更好的,外界用户无法修改g这个图,当然可以使用一个函数,但是需要将数据复制一份,这样不是太好的,更好的方法呢?
使用迭代器
迭代器将具体实现隐藏了,这样稀疏图和稠密图的接口就可以保持一致。
代码如下:
SparseGraph.h

#ifndef VERTEX_ADJACENT_ITERATOR_SPARSEGRAPH_H
#define VERTEX_ADJACENT_ITERATOR_SPARSEGRAPH_H

#include <iostream>
#include <vector>
#include <cassert>

using namespace std;

// 稀疏图 - 邻接表
class SparseGraph{

private:
    int n, m;       // 节点数和边数
    bool directed;  // 是否为有向图
    vector<vector<int>> g;  // 图的具体数据

public:
    // 构造函数
    SparseGraph( int n , bool directed ){
        assert( n >= 0 );
        this->n = n;
        this->m = 0;    // 初始化没有任何边
        this->directed = directed;
        // g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
        g = vector<vector<int>>(n, vector<int>());
    }

    ~SparseGraph(){ }

    int V(){ return n;} // 返回节点个数
    int E(){ return m;} // 返回边的个数

    // 向图中添加一个边
    void addEdge( int v, int w ){

        assert( v >= 0 && v < n );
        assert( w >= 0 && w < n );

        g[v].push_back(w);
        if( v != w && !directed )
            g[w].push_back(v);

        m ++;
    }

    // 验证图中是否有从v到w的边
    bool hasEdge( int v , int w ){

        assert( v >= 0 && v < n );
        assert( w >= 0 && w < n );

        for( int i = 0 ; i < g[v].size() ; i ++ )
            if( g[v][i] == w )
                return true;
        return false;
    }

    // 邻边迭代器, 传入一个图和一个顶点,
    // 迭代在这个图中和这个顶点向连的所有顶点
    class adjIterator{
    private:
        SparseGraph &G; // 图G的引用
        int v;
        int index;

    public:
        // 构造函数
        adjIterator(SparseGraph &graph, int v): G(graph){
            this->v = v;
            this->index = 0;
        }

        ~adjIterator(){}

        // 返回图G中与顶点v相连接的第一个顶点
        int begin(){
            index = 0;
            if( G.g[v].size() )
                return G.g[v][index];
            // 若没有顶点和v相连接, 则返回-1
            return -1;
        }

        // 返回图G中与顶点v相连接的下一个顶点
        int next(){
            index ++;
            if( index < G.g[v].size() )
                return G.g[v][index];
            // 若没有顶点和v相连接, 则返回-1
            return -1;
        }

        // 查看是否已经迭代完了图G中与顶点v相连接的所有顶点
        bool end(){
            return index >= G.g[v].size();
        }
    };
};

#endif //VERTEX_ADJACENT_ITERATOR_SPARSEGRAPH_H

DenseGraph.h

#ifndef VERTEX_ADJACENT_ITERATOR_DENSEGRAPH_H
#define VERTEX_ADJACENT_ITERATOR_DENSEGRAPH_H

#include <iostream>
#include <vector>
#include <cassert>

using namespace std;

// 稠密图 - 邻接矩阵
class DenseGraph{

private:
    int n, m;       // 节点数和边数
    bool directed;  // 是否为有向图
    vector<vector<bool>> g; // 图的具体数据

public:
    // 构造函数
    DenseGraph( int n , bool directed ){
        assert( n >= 0 );
        this->n = n;
        this->m = 0;    // 初始化没有任何边
        this->directed = directed;
        // g初始化为n*n的布尔矩阵, 每一个g[i][j]均为false, 表示没有任和边
        g = vector<vector<bool>>(n, vector<bool>(n, false));
    }

    ~DenseGraph(){ }

    int V(){ return n;} // 返回节点个数
    int E(){ return m;} // 返回边的个数

    // 向图中添加一个边
    void addEdge( int v , int w ){

        assert( v >= 0 && v < n );
        assert( w >= 0 && w < n );

        if( hasEdge( v , w ) )
            return;

        g[v][w] = true;
        if( !directed )
            g[w][v] = true;

        m ++;
    }

    // 验证图中是否有从v到w的边
    bool hasEdge( int v , int w ){
        assert( v >= 0 && v < n );
        assert( w >= 0 && w < n );
        return g[v][w];
    }

    // 邻边迭代器, 传入一个图和一个顶点,
    // 迭代在这个图中和这个顶点向连的所有顶点
    class adjIterator{
    private:
        DenseGraph &G;  // 图G的引用
        int v;
        int index;

    public:
        // 构造函数
        adjIterator(DenseGraph &graph, int v): G(graph){
            assert( v >= 0 && v < G.n );
            this->v = v;
            this->index = -1;   // 索引从-1开始, 因为每次遍历都需要调用一次next()
        }

        ~adjIterator(){}

        // 返回图G中与顶点v相连接的第一个顶点
        int begin(){

            // 索引从-1开始, 因为每次遍历都需要调用一次next()
            index = -1;
            return next();
        }

        // 返回图G中与顶点v相连接的下一个顶点
        int next(){

            // 从当前index开始向后搜索, 直到找到一个g[v][index]为true
            for( index += 1 ; index < G.V() ; index ++ )
                if( G.g[v][index] )
                    return index;
            // 若没有顶点和v相连接, 则返回-1
            return -1;
        }

        // 查看是否已经迭代完了图G中与顶点v相连接的所有顶点
        bool end(){
            return index >= G.V();
        }
    };
};

#endif //VERTEX_ADJACENT_ITERATOR_DENSEGRAPH_H

main.cpp

#include <iostream>
#include "SparseGraph.h"
#include "DenseGraph.h"

using namespace std;


int main() {

    int N = 20;
    int M = 100;

    srand( time(NULL) );


    // Sparse Graph
    SparseGraph g1(N , false);
    for( int i = 0 ; i < M ; i ++ ){
        int a = rand()%N;
        int b = rand()%N;
        g1.addEdge( a , b );
    }

    // O(E)
    for( int v = 0 ; v < N ; v ++ ){
        cout<<v<<" : ";
        SparseGraph::adjIterator adj( g1 , v );
        for( int w = adj.begin() ; !adj.end() ; w = adj.next() )
            cout<<w<<" ";
        cout<<endl;
    }

    cout<<endl;


    // Dense Graph
    DenseGraph g2(N , false);
    for( int i = 0 ; i < M ; i ++ ){
        int a = rand()%N;
        int b = rand()%N;
        g2.addEdge( a , b );
    }

    // O(V^2)
    for( int v = 0 ; v < N ; v ++ ){
        cout<<v<<" : ";
        DenseGraph::adjIterator adj( g2 , v );
        for( int w = adj.begin() ; !adj.end() ; w = adj.next() )
            cout<<w<<" ";
        cout<<endl;
    }

    return 0;
}