重构某个由定时任务调度的系统,升级为流式系统。
kafka-stream 2.7.0
kafka 2.7.0
kafka基础配置
private static Properties buildConfigProps() {
Properties props = new Properties();
String applicationId = "test_33333";
props.put("bootstrap.servers", "192.168.10.152:9092");
props.put("application.id", applicationId);
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("max.poll.records", 1000);
props.put("auto.offset.reset", "earliest");
props.put("key.deserializer", StringDeserializer.class.getName());
props.put("value.deserializer", StringDeserializer.class.getName());
props.put("key.serializer", StringSerializer.class.getName());
props.put("value.serializer", StringSerializer.class.getName());
return props;
}
fast-json实现的序列化处理器
import com.alibaba.fastjson2.JSON;
import org.apache.kafka.common.serialization.Serializer;
public class JSONSerializer<T> implements Serializer<T> {
@Override
public byte[] serialize(String topic, T data) {
if (data == null) {
return null;
}
return JSON.toJSONBytes(data);
}
}
import com.alibaba.fastjson2.JSON;
import org.apache.kafka.common.serialization.Deserializer;
public class JSONDeserializer<T> implements Deserializer<T> {
@Override
public T deserialize(String topic, byte[] data) {
if (data == null || data.length == 0) {
return null;
}
return (T) JSON.parse(data);
}
}
异常处理逻辑
public abstract class RetryExceptionHandler {
public static final String SOURCE_TOPIC_KEY = "sourceTopic";
public static final String PRODUCER_KEY = "producer";
protected String sourceTopic;
protected KafkaProducer<String, String> producer;
public void configure(Map<String, ?> config) {
this.sourceTopic = (String) config.get(SOURCE_TOPIC_KEY);
this.producer = (KafkaProducer<String, String>) config.get(PRODUCER_KEY);
}
}
@Slf4j
public class RetryDeserializationExceptionHandler extends RetryExceptionHandler implements DeserializationExceptionHandler {
@Override
public DeserializationHandlerResponse handle(ProcessorContext context,
ConsumerRecord<byte[], byte[]> record, Exception exception) {
log.error("Exception caught during Deserialization, sending to the source topic, " +
"taskId: {}, topic: {}, partition: {}, offset: {}",
context.taskId(), record.topic(), record.partition(), record.offset(),
exception);
byte[] value = record.value();
producer.send(new ProducerRecord<>(sourceTopic, new String(value, StandardCharsets.UTF_8)));
return DeserializationHandlerResponse.CONTINUE;
}
}
@Slf4j
public class RetryProductionExceptionHandler extends RetryExceptionHandler implements
ProductionExceptionHandler {
@Override
public ProductionExceptionHandlerResponse handle(ProducerRecord<byte[], byte[]> record,
Exception exception) {
log.error("Exception caught during Production, sending to the source topic, " +
"topic: {}, partition: {}, offset: {}", record.topic(), record.partition(), exception);
ProducerRecord<String, String> producerRecord = new ProducerRecord<>(
new String(record.key(), StandardCharsets.UTF_8), new String(record.value(), StandardCharsets.UTF_8));
producer.send(producerRecord);
return ProductionExceptionHandlerResponse.CONTINUE;
}
}
@Slf4j
public class RestartUncaughtExceptionHandler implements Thread.UncaughtExceptionHandler {
public static final int MAX_AGE = 3;
private StreamsBuilder streamsBuilder;
private Properties props;
private AtomicInteger age;
public RestartUncaughtExceptionHandler(StreamsBuilder streamsBuilder, Properties props) {
this.streamsBuilder = streamsBuilder;
this.props = props;
this.age = new AtomicInteger();
}
@Override
public void uncaughtException(Thread t, Throwable e) {
log.error("thread: {} process failed. age: {}", t.getName(), age, e);
if (age.get() > MAX_AGE) {
log.info("stop the stream application after retry times: {}", age);
return;
}
age.incrementAndGet();
KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(), props);
kafkaStreams.setUncaughtExceptionHandler(this);
kafkaStreams.start();
}
}
kafka-stream核心逻辑
private static final String SOURCE_TOPIC = "sourceTopic";
private static final String SINK_TOPIC = "sinkTopic";
@Test
void helloWorld() {
// kafka config
Properties props = buildConfigProps();
Serde<String> stringSerde = Serdes.String();
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, stringSerde.getClass().getName());
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, stringSerde.getClass().getName());
props.put(StreamsConfig.PROCESSING_GUARANTEE_CONFIG, StreamsConfig.EXACTLY_ONCE_BETA);
props.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 10000);
props.put(StreamsConfig.DEFAULT_DESERIALIZATION_EXCEPTION_HANDLER_CLASS_CONFIG,
RetryDeserializationExceptionHandler.class.getName());
props.put(StreamsConfig.DEFAULT_PRODUCTION_EXCEPTION_HANDLER_CLASS_CONFIG,
RetryProductionExceptionHandler.class.getName());
props.put(RetryExceptionHandler.PRODUCER_KEY, producer);
props.put(RetryExceptionHandler.SOURCE_TOPIC_KEY, SOURCE_TOPIC);
Serde<List<String>> jsonSerde = Serdes.serdeFrom(new JSONSerializer<>(),
new JSONDeserializer<>());
StreamsBuilder streamsBuilder = new StreamsBuilder();
KStream<String, String> kStream = streamsBuilder.stream(SOURCE_TOPIC,
Consumed.with(stringSerde, stringSerde));
Duration windowSize = Duration.ofSeconds(10);
Materialized<String, List<String>, WindowStore<Bytes, byte[]>> storeMaterialized = Materialized.<String, List<String>, WindowStore<Bytes, byte[]>>as(
"time-windowed-aggregated-stream-store").withKeySerde(stringSerde).withValueSerde(jsonSerde)
.withRetention(Duration.ofMinutes(5));
ConcurrentHashMap<String, Long> aggRecordMap = new ConcurrentHashMap<>();
String lastMsgTimeKey = "lastMsgTimeKey";
String signal = "signal";
KTable<Windowed<String>, List<String>> kTable = kStream.groupBy((k, v) -> "defaultKey")
.windowedBy(TimeWindows.of(windowSize).grace(Duration.ZERO))
.aggregate(() -> new ArrayList<>(), (k, v, agg) -> {
System.out.println("========== aggregate record ==========");
log.info("k: {}, v: {}, agg: {}", k, v, agg);
if (!signal.equals(v)) {
agg.add(v);
}
aggRecordMap.put(lastMsgTimeKey, System.currentTimeMillis());
return agg;
}, storeMaterialized).suppress(Suppressed.untilWindowCloses(BufferConfig.unbounded()));
String backFlow = "backFlow";
KStream<String, JSONObject>[] branches = kTable.mapValues(list -> list).mapValues(list -> list)
.toStream().flatMap(
(k, v) -> {
List<KeyValue<String, JSONObject>> keyValues = new ArrayList<>(v.size());
System.out.println("========== flatMap record ==========");
log.info("k: {}, v: {}", k, v);
v.stream().forEach(str -> {
JSONObject jsonObject = JSON.parseObject(str);
int index = jsonObject.getIntValue("index");
boolean backFlowFlag = jsonObject.getBooleanValue(backFlow);
if (!backFlowFlag && index % 2 == 0) {
jsonObject.put(backFlow, true);
} else {
jsonObject.remove(backFlow);
}
keyValues.add(new KeyValue<>(String.valueOf(index), jsonObject));
});
log.info("keyValues: {}", keyValues);
return keyValues;
})
.branch((k, v) -> !v.getBooleanValue(backFlow), (k, v) -> v.getBooleanValue(backFlow));
branches[0].mapValues(v -> v.toJSONString())
.to(SINK_TOPIC, Produced.with(stringSerde, stringSerde));
KafkaProducer<String, String> producer = new KafkaProducer<>(buildConfigProps());
branches[1].map((k, v) -> new KeyValue<>(k, new ProducerRecord<>(SOURCE_TOPIC, k, v.toJSONString())))
.foreach((k, v) -> producer.send(v));
KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(), props);
kafkaStreams.setUncaughtExceptionHandler(
new RestartUncaughtExceptionHandler(streamsBuilder, props));
kafkaStreams.start();
while (true) {
System.out.println("运行中......");
Long lastModifiedKey = aggRecordMap.getOrDefault(lastMsgTimeKey, 0L);
if (lastModifiedKey > 0 && System.currentTimeMillis() - lastModifiedKey > windowSize.toMillis()) {
producer.send(new ProducerRecord<>(SOURCE_TOPIC, lastModifiedKey.toString(), signal));
}
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
实验发现,TimeWindow在生产者持续生产消息时,可以按照预期工作。但生产者停止发送消息后,最后一次窗口无法闭合,直到生产者再次发送消息。
尝试过各种修改,搞不定,怀疑kafka-stream本来就是这么设计的,无界数据,不需要考虑停止...
在发送邮件给kafka开发者社区users@kafka.apache.org询问后,我得到了大佬John Roesler(vvcephei@apache.org)的答复: kafka事件时间基于生产者推动,生产者停止,时钟也就停止了。
为了解决这个问题,只能写个轮巡任务去定期发假消息(dummy record).
某些场景,部分记录需要回流到源端,下个周期重新处理,所以demo中使用了branch操作。
实验中发现发送直接to到源主题中的消息,无法再次进入stream中,可能是kafka规避死循环的某种机制。但可以直接使用Producer发送到源端。
kafka中流动的是orderId,而不是整个order,是因为业务上order可能会非常大,可能会超出kafka单条消息限制,并且造成网络拥堵。
暂时实现为传递orderId的半流式系统,待后续重构order结构。